AP Chemistry Summer Assignment (Semester-Long)

The following assignment will not be collected. These topics and others, however, will be tested in the first unit of the semester. You will have a markedly sharper recall of chemistry topics and a distinctly lower workload for Unit 1 if you complete this assignment before the first day of school. Questions about the assignment may be directed to cwayand@wcpss.net.

Nomenclature

1.	Name these binary compounds of two nonmetals.	
П	- 7	As ₄ O ₁₀
N	J ₂ O ₅	SF ₆
Х	eF ₂	PCl ₃
Ν	J ₂ O	SCl ₂
2.	Name these binary compounds with cations of a fixed	
C	csCl	SrBr ₂
٨	ЛgO	Na ₂ S
В	al ₂	CaF ₂
K	′ ₃ N	Al_2O_3
3.	Name these binary compounds with cations of variable	
C	CuCl ₂	Cu ₂ S
F	e ₂ O ₃	HgS
S	nO	Aul ₃
Р	bCl ₄	CoP
4.	Name these compounds with polyatomic ions. Follow	
F	e(NO ₃) ₃	K ₂ SO ₂
N	JaOH	NaHCO ₃
C	Cu ₂ SO ₄	NH ₄ NO ₂
	Ga(CIO ₃) ₂	Cu ₂ Cr ₂ O ₇

5.	Name these binary acids.	
	HCI	HI
6.	Name these oxoacids (acids with polyatomic ions).	
	HClO ₄	HNO ₂
	H ₂ SO ₄	H ₂ CrO ₄
	$HC_2H_3O_2$	$H_2C_2O_4$
	H ₃ PO ₄	H ₂ CO ₃
7.	Name these compounds appropriately. Apply the cor	rect naming convention.
	CO	HF
	NH ₄ CN	SO ₂
	HIO ₃	CuCr ₂ O ₇
	NI ₃	K ₂ O
	AIP	FeF ₃
	OF ₂	PbSO ₄
	LiMnO ₄	KC ₂ H ₃ O ₂
	HCIO	MnS
8.	Write the formulas for these compounds.	
	tin (IV) phosphide	potassium nitride
	copper (II) cyanide	chromium (III) carbonate
	magnesium hydroxide	gallium arsenide
	sodium peroxide	cobalt (II) chromate
	sulfurous acid	zinc fluoride
	lithium silicate	dichromic acid

Solubility rules

9.	Review solubility rules and identify the following compounds as soluble (aq) or insoluble (s) in water.

Na₂CO₃

FeS _____

CoCO₃

PbCl₂

Pb(NO₃)₂_____

CuSO₄

K₂S _____

Li₂O _____

BaSO₄

 $Mn(C_2H_3O_2)_2$

(NH₄)₂S _____

Cr(OH)₃_____

AgI _____

AgClO₃

 $Sn(SO_3)_4$

Ni(NO₃)₂_____

10. Predict whether each of these double replacement reactions will produce a precipitate or not based on the

solubility of the products. If yes, identify the precipitate.

silver nitrate and potassium chloride

magnesium nitrate and sodium carbonate

_				

strontium bromide and potassium sulfate _____

cobalt (III) bromide and potassium sulfide _____

			1

ammonium hydroxide and copper (II) acetate_____

Balancing Equations

11. Balance the following equations with the lowest whole number coefficients.

$$_{---}$$
 C₁₀H₁₆ + $_{---}$ Cl₂ $?$ $_{---}$ C + $_{---}$ HCl

$$_$$
 Fe + $_$ O₂ $?$ $_$ Fe₂O₃

$$V_2O_5 + MCI 2 VOCI_3 + H_2O$$

$$C_7H_6O_2 + O_2 \supseteq CO_2 + H_2O$$

Writing Reactions

12. \	Write	a balanced equation with	physical states	for the follow	ving:		
	a.	Reaction of boron trifluor	ride gas with wa	ter to yield a	queous hydrofluori	ic acid and solid boric a	acid
	b.	Reduction of iron (III) oxid	de by magnesiur	m to form ma	gnesium oxide and	l iron.	
	c.	The decomposition of dir	nitrogen oxide ga	as into its ele	ments.		
	d.	Solid calcium carbide rea	cts with water to	o form calciu	m hydroxide and ac	cetylene (C ₂ H ₂) gas.	
	e.	Solid calcium cyanamide	(CaCN ₂) reacts w	vith water to	form calcium carbo	onate and ammonia ga	is.
	f.	Ethane burns in air (oxyg	en).				
	g.	Sodium reacts with iodin	e gas to form so	dium iodide.			
	h.	Carbon dioxide combines	s with water to fo	orm carbonic	acid.		
	i.	Magnesium and nitrogen	gas combine to	form magne	sium nitride.		
Quan	<u>titativ</u>	ve Relationships in Chemis	stry				
13. H	ow m	any significant figures are	in each of the fo	ollowing?			
	a.	1.9200 mm		e.	0.000036 cm ³		
	b.	0.0301001 kJ		f.	10000 J		
	c.	6.022 x 10 ²³ atoms		g.	110. mL		
	d.	460.000 L		h.	0.001345 g		

14. Record the following in correct scientific notation:

- a. 4050,000,000 cal
- c. 0.00345 g
- b. 0.000123 mol
- d. 700,000,000 atoms _____

15. Calculate the following to the **correct number** of significant figures. Maintain units where appropriate.

- a. $1.270 \text{ g} / 5.296 \text{ cm}^3 =$
- d. 170 g + 2.785 g =
- b. 12.235 g / 1.010 L = _____
- e. 2.100 cm × 3.2102 cm = _____
- c. 12 g + 0.38 g =
- f. 2.35 mL 0.4 mL 1.23 mL =

16. Calculate the number of moles of the following: (SHOW YOUR WORK!)

- a. $42.8 g of KNO_3$
- b. 9.25×10^{26} formula units of CaCl₂
- c. 155.7 L of CO₂ at STP

Stoichiometry and Limiting Reactants

16. Given the equation below, what mass of water would be needed to completely react with 10.0 g of sodium oxide?

$$_{\rm Na_2O}$$
 (s) + $_{\rm H_2O}$ (l) $_{\rm II}$ $_{\rm NaOH}$ (aq)

17.
$$_$$
 NaClO₃ (s) $\boxed{2}$ $_$ NaCl (s) + $_$ O₂ (g)

What mass of sodium chloride is formed along with 45.0 g of oxygen gas?

18. $_NH_3(g) + _O_2(g) \ \ _NO(g) + _H_2O(g)$

What mass of water vapor will be produced when 100.0 g of ammonia is reacted with excess oxygen?

- 19. If the reaction in #18 is performed with 25.0 g of each reactant, which would be the limiting factor?
- 20. $_$ Na₂S (aq) + $_$ AgNO (aq) $\boxed{2}$ $_$ Ag₂S (s) + $_$ NaNO₃ (aq)

If the above reaction is carried out with 50.0 g of sodium sulfide and 35.0 g of silver nitrate, which is the limiting factor?

What mass of the excess reactant remains?

What mass of silver sulfide would precipitate?

21. $_$ NaOH (aq) + $_$ Al (s) $\boxed{2}$ $_$ Na₃AlO₃ (aq) + $_$ H₂ (g)

What volume of hydrogen gas (measured at STP) would result from reacting 75.0 g of sodium hydroxide with 50.0 g of aluminum?